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Abstract

Bank failure prediction is a popular topic that requires highly accurate results. We

contribute to the literature by determining whether models based on the crisis data

are suitable for predicting bank failure during a stable period and which predictors

can be held for long-term forecasting. In this paper, we design a multistage procedure,

including feature selection and application of four advanced single machine learning

techniques to predict bank insolvencies based on a sample of U.S. banks over 2006-

2019. We set two time windows to explain the bank failure in pre and in-crisis and

predict bank insolvency in a stable period. The feature selection results illustrate that

capital, asset, and liquidity predictors contribute more to explaining bank failure. In

the prediction, we found that the second-generation ensemble method has a superior

prediction performance and provides the most accurate prediction results. We also

extend the multi-step predicting approach to reclassify banks into four and six groups,

which takes an insight into banks’ risk default levels and compares banks’ risk-bearing

abilities in different risk levels. Our results of the multigroup classification suggest that

non-failed banks can have more risk than failed banks. With adequate liquidity and

capital, the non-failed banks can bear more risks, which helps them survive during the

crisis.
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1 Introduction

Banks play an essential role in financing the economy as intermediaries in financial markets.

Due to the contagion effects, the bank failure triggers much more severe volatility than the

failure of other business firms. According to the Federal Deposit Insurance Corporation,

24 banks failed in the U.S. from 2000-2006, while the number increased to 492 during the

2009 financial crisis. The increasing complexity and volatility of financial markets lead to

the need to identify the potential risks in banking systems. The implementation of Basel III

emphasizes the critical role of early regulation. At the same time, increasing risk management

concerns the rise of bank failure prediction topics with various indicators and techniques.

Many existing studies (Sarkar and Sriram, 2001; Ramirez and Shively, 2012; Berger, 2013;

Shaban and James, 2018; Boyallian and Ruiz-Verdú, 2018; Mili, Khayati and Khouaja, 2019)

investigate bank financial performance regarding their risk-taking behavior. The motivation

for predicting bank failure is to identify banks that are at risk of collapsing and consequently

take action to prevent it. This can help protect depositors, investors, and the broader

economy from the negative consequences of a bank failure, such as loss of access to funds,

increased financial instability, and potential economic downturn. In the short run, early

warning systems for bank failure can also help regulators and policymakers identify and

address underlying issues within the financial system that may be contributing to a bank’s

struggles. In the long run, accurate predictions can lower the costs brought by the crisis and

help to stabilize the financial markets. Moreover, accurate results of a possible bank failure

can considerably help supervisors adjust regulations further.

Banks generate vast amounts of data, including financial statements, lending and invest-

ment activity, and customer behavior, which can be challenging to process and analyze in

a timely and accurate manner using conventional manual methods. Artificial intelligence

(AI) and machine learning (ML) are beneficial for predicting bank failures because they can

analyze large volumes of complex data and identify patterns and trends that may not be able

to discern in analysis through personal efforts. On the other hand, AI and ML algorithms

can analyze large amounts of complex data quickly and efficiently since they can learn from

data in real time and identify trends that are not apparent to humans. Therefore, AI and

ML are suitable for identifying potential indicators of bank failure, such as declining asset
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quality, reduced liquidity, and increased leverage, when they occur rather than after the fact.

This is particularly useful in predicting bank failures, where prompt and accurate analysis

is crucial to decision-making, helps provide early warning of potential problems, and allows

banks and regulators to act before disruptions occur. Additionally, AI and ML algorithms

can be continuously trained and updated with new data, making them more accurate and

effective.

Regarding the mentioned outstanding benefits of using AI and ML, a strand of existing

research employs ML techniques to improve the classification accuracy in predicting bank

failures. Some use stand-alone methods, such as boosting methods(Carmona, Climent and

Momparler, 2019; Climent, Momparler and Carmona, 2019), support vector machine (SVM)

(Ecer, 2013; Manthoulis et al., 2020), Neural Network (NN) (Tam and Kiang, 1992; Ng,

Quek and Jiang, 2008). Besides, some research employs various machine learning methods

to test the efficiency of each technique and find the best-performing one(Ecer, 2013; Erdal

and Ekinci, 2013; Uthayakumar et al., 2020). Thus, they are aimed to reach higher accuracy

in forecasting. Additionally, the explanation power of predictors also plays an essential role

in forecasting accuracy (Cole and Wu, 2014). A group of studies investigates the influence of

macroeconomic factors (Apergis and Payne, 2013; Mare, 2015; Wulandari and Kusairi, 2017),

aand some other studies focus on some individual factors of banks (Berger, Imbierowicz and

Rauch, 2016; Boyallian and Ruiz-Verdú, 2018).

We contribute to the literature by focusing on whether models based on the crisis data are

suitable for further predicting bank failure in a stable period and which predictors can be

held for long-term forecasting. Using a comprehensive dataset incorporating bank failures

from 2006 to 2019 in the U.S., we employ a multi-stage approach to explain and predict bank

failures over time. The output in the last stage will be used as the input in the successive

stages; for instance, the optimal results of the feature selection will be devoted to the next

stage of bank insolvency prediction to explain the crisis of failure caused by poor operations

within banks. The motivation behind using a multi-stage approach is to make the process

of bank failure prediction easier to understand and solve by breaking it down into smaller,

more manageable parts. This research breaks the predicting process into three portions:

correlation test, feature selection, and two-group and multi-group classification. In each
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step, we unit the results of different methods.

Additionally, a multi-stage approach allows for a more structured and methodical ap-

proach to problem-solving, which helps ensure that all relevant factors are considered and

the classifications are efficient. For instance, our feature selection procedure encompasses the

evaluation of correlation, non-linear relationships, and multicollinearity. Finally, the multi-

stage approach is more flexible and robust than the single methods to changes in data, as it

allows the combination of strengths of different methods. Single traditional methods can be

sensitive to data type, quality, and endogenous problems. At the same time, a multi-stage

approach is tailored to solve all potential problems most efficiently.

The view that a financial institution has a culture or business model that affects its

sensitivity to crises implies that the performance of a financial institution in one crisis should

predict its performance in another crisis (Fahlenbrach, Prilmeier and Stulz, 2012). If it is

the case, explanations of bank performance during the financial crisis can provide a measure

of its exposure to failure over time. In this case, we set two time windows, 2006-2012 and

2013-2019. The former illustrates the bank’s failure before and during the financial crisis.

The latter time window covers the post-crisis period to the stable recovery, which shows

the bank’s performance post the financial crisis. The second time window presents the

persistence in a bank’s risk culture, making it more sensitive to exposure to failure, even in a

thriving financial market. We use the data for training the ML models and provide insights

into how bank failure occurs.

In the multi-stage procedure, we implement feature selection in the first and second stages,

which include the correlation test and embedded methods. It is noted that discovering the

relevant predictive variables is an essential preprocessing to solve the optimization problem,

such as accurately predicting bankruptcy, especially when one is faced with a vast data set

including over one hundred thousand pieces of information. Also, variable selection is crucial

when the true underlying model can show sparse results to identify the remaining significant

predictors (Zou, 2006). In general, feature selection is a process to exploit specific feature

criterion that determines the salient features that are relevant but not redundant to the clas-

sification tasks (Unler and Murat, 2010). Thus, identifying the significant features guarantees

efficient prediction performance in applied models and highly accurate results(Maldonado,
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Pérez and Bravo, 2017).

A strand of existing research used individual feature selection methods to indicate the

performance improvement in regression (classification) (Unler and Murat, 2010; Maldonado,

Pérez and Bravo, 2017; Ghaddar and Naoum-Sawaya, 2018; Petropoulos et al., 2020). How-

ever, some potential challenges are still in the way of efficiently applying individual feature

selection methods. The research to date has tended to focus on continuous data rather than

categorical data. Our paper predicts bank failures by classifying banks into failed or non-

failed groups based on the selected features, resulting in a binary dependent variable. In this

case, a simple correlation test, such as Spearman’s correlation, is unsuitable for measuring

associations between predictors and bank failures.

Furthermore, appropriate feature selection methods for such categorical data are limited

due to the difficulty in capturing the internal link between variables that are only significant

if they associate with some meaningful values. Thus, some widely used penalized methods,

such as Lasso, cannot select the best variable subset when applied to the categorical data

because such methods require continuous variables in linear regression. Therefore, we must

apply an improved penalized regression model by combining the likelihood function. The

penalty term is used to regularize a logistic regression model for classification tasks with

categorical variables.

In terms of computational efficiency, the individual feature selection method is exposed

to limitations of computational consumption and high variability(Unler and Murat, 2010).

One of the critical criteria for feature selection is a benchmark that evaluates each feature’s

significance and determines the subset groups’ size. However, the benchmark setting is

subjective to users and varies across methods, which leads to different explanations of feature

importance. Thus, the salient feature identified by one method may not be recognized as

meaningful by another. Besides, in terms of the classification problem, lacking information

about the interaction between the features and the classifier also lead to variability across

subsets(Bennasar, Hicks and Setchi, 2015). Additionally, the non-linear relationship between

the dependent and independent variables is another challenge in generating efficient results

when the explanation power of predictors is overestimated. Past studies on bank distress

either result in various explanatory variables in the form of financial ratios constructed by
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domain knowledge or solely focus on data mining that reduces the volume of predictors to

improve the prediction. In these cases, the explanation to ascertain the association within

the vulnerability indicators is far from the complete story. Identifying the non-linearity and

applying suitable models are critical for investigating the internal causation of synchronous

change of variables. Otherwise, the ineffective model may retain redundant and irrelevant

features, resulting in an overestimated feature significance.

To solve the abovementioned issues, the correlation test and embedded methods in the first

two stages are combined to improve the performance of the prediction. Using a multi-stage

approach will be made more explicit by considering the properties in the feature selection

models when the dependent variable is a dummy. In the first stage, we used mutual informa-

tion selection that uses entropy to evaluate the information gained from one variable based

on the knowledge of the other to determine the degree of correlation between variables. In

the second stage, Logistic Lasso and the Random Forests (RFs) further shrink the volume of

variables. The Logistic Lasso is an improvement on the traditional Lasso that uses logistic

regression as the fundamental function when dealing with classification problems involving

categorical dependent variables. Random Forests (RFs) is an ensemble tree method suitable

for a non-linear relationship evaluation of the feature importance. Consequently, the opti-

mal variable subset is the combination of results from Logistic Lasso and RFs. Specifically,

most variables in the optimal subset are derived from intersections of the results provided by

both embedded methods. After accounting for non-linear correlations, the RFs discover the

rest factors that are important but not revealed by the Logistic Lasso. Thus, the ensemble

technique units the benefits from each method and diversifies the errors by considering the

data type, non-linear relationship, and variability.

In the third stage, we predict bank insolvency primarily by using different types of ML

models that are popular and widely accepted. To be more objective, we will compare their

performance regarding predicting accuracy and identify the most efficient one for long-term

forecasting. We apply supervised machine learning models, including the type of boost-

ing (i.e., gradient boosting decision tree, GBDT), deep learning (i.e., neural network, NN),

hyperplane classification (i.e., support vector machine, SVM) as well as a distance-based

technique, the K-nearest neighbor (KNN), to non-linear data. These methods are exten-
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sively accepted by the studies of differentiating failure from solvent institutions, while few

emphasize comparing their characteristics. Moreover, GBDT is barely used in bank failure

prediction.

Our objective is not simply to explain the previous failure but, more importantly, to

predict the failure in the future. Therefore, we focus on prediction accuracy improvement

and investigate alleviating different errors, such as reducing the impact of noise data and

redundant information. Thus, we use four single models in the third stage to diversify the

application of the bank failure prediction and provide comprehensive evaluations of the bank

performance based on the selected variable set. In the meantime, we would like to identify

the most efficient machine learning model that can have the best performance for forecasting

extensive banking data.

Additionally, banks risk default if they are impeded from meeting their financial obliga-

tions to depositors and creditors. Therefore, it is vital to understand whether some banks

are prone to perform poorly during the financial crisis related to their capability to bear the

risks. In some related papers (Fahlenbrach, Prilmeier and Stulz, 2012; Beltratti and Stulz,

2012; K”ohler, 2015), the bank’s business model and risk culture are persistent in explaining

its performance during the crisis. Our research also focuses on the risk culture that presents

by banks’ risk-taking behavior. To answer the question on the relationship between a bank’s

poor behavior and its capability of bearing risks, we calculate the bank’s risk level, z-score,

and use it as an indicator, along with banks’ solvency, to reclassify observed banks into mul-

tiple groups. Our finding suggests that banks’ ability to deal with risks is a more significant

factor in explaining a bank’s crisis performance than its absolute risk levels. Banks that can

effectively resist negative shocks have a higher probability of survival, even at higher risk

levels.

Our main results hold up in a variety of robustness tests. The in-sample results indicate

GBDT outperforms in classification. Specifically, It has the highest rates in all performance

measurements. Compared to the other three models, GBDT has superior performance be-

cause it can capture non-linear interactions between features and is robust to outliers and

noise in the data. Furthermore, GBDT uses the boosting procedure to continuously improve

its performance by focusing on the portions of the feature space with poor performance.
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KNN performs better on the “in-sample” and “out-of-time” samples.

Moreover, NNs have the worst predictive power across all the samples. For the multi-group

classification, the best performance of GBDT shows evidence of specific default risks within

and between the failed and non-failed banks. The minor decline in prediction accuracy from

a four-group classification to a six-group classification is the consequence of the decrease in

the data distribution per group as the number of groups grows.

The rest of the content proceeds as follows: Section 2 reviews the previous studies on

bank failure prediction. Section 3 describes the data of banks. Section 4 is devoted to the

methodologies of variable selection and prediction models. Section 5 presents the prediction

results. Section 6 summarizes and concludes our study and introduces some further research

plans.

2 Literature Review

The popularity of machine learning models attributes to the development of computing

power and their ability to learn patterns in data and make a prediction without being

explicitly programmed, which allows them to be applied to many different fields, including

finance, healthcare, and marketing. A strand of existing literature conducts comprehensive

surveys of bank failure prediction with machine learning methods. Fethi and Pasiouras

(2010) focused on bank performance evaluation, such as bank insolvency forecasting, using

machine learning methods. Demyanyk and Hasan (2010) provided an inclusive summary

of the machine learning methods used for elaborating, predicting, and taking the remedial

actions the bank defaults. In recent research, Manthoulis et al. (2021) and Doumpos et al.

(2022) presented the comparative results of the summarized machine-learning approaches

to bank failure prediction with different prediction horizons and variable sets. The existing

literature has illustrated that the improvement of bank failure prediction also demands decent

predictors for accurately explaining bank insolvency with the help of machine learning.
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2.1 Selected Features

A large group of studies in bank failure prediction utilized CAMELS (capital, asset, man-

agement, equity, liquidity, sensitivity to risks) as predictors (Curry and Shibut, 2000; Barth,

Trimbath and Yago, 2006; Cole and White, 2012; Mayes and Stremmel, 2012; Vazquez and

Federico, 2015; Audrino, Kostrov and Ortega, 2019; Manthoulis et al., 2020). Moreover, some

research combined CAMELS with additional variables to enhance the explanatory power,

which can help increase the prediction models’ accuracy (Serrano-Cinca et al., 2014; Man-

thoulis et al., 2020). Besides CAMELS, a group of literature used study-specific indicators

to explain the bank failure, such as audit quality (Jin, Kanagaretnam and Lobo, 2011), the

bank’s internal control (Jin et al., 2013), the role of bank ownership, management and com-

pensation structure (Berger, Imbierowicz and Rauch, 2016), local housing conditions and

internal bank funding (Sun, Wu and Zhao, 2018), the lag effect of bank efficiency (Assaf et

al., 2019), cost of insured deposits (Chernykh and Kotomin, 2022). Using predictors beyond

the CAMELS increases the diversification in the variable sets.

Furthermore, variable selection methods are applied to provide conclusive evidence of the

importance of the variables in predicting bank insolvency. There are two domain ways, fea-

ture selection, and dimensionally reduction—the former selects features without changing

them, such as Lasso ( Tibshirani, 1996). The latter is to transform the features into a lower

dimension, such as Principle Component Analysis (PCA). Before forecasting, some studies

use the single feature selection method (Canbas, Cabuk and Kilic, 2005; Carmona, Climent

and Momparler, 2019). A few pieces of literature apply multiple-stage variable selection.

Petropoulos et al. (2020) select the best variable subset by combining filter methods, includ-

ing Pearson correlation and pairwise tests, and Embedded procedures, including Lasso.

This research uses CAMELS as primary predictors that provide comprehensive financial

information on banks. CAMELS are widely used in banking studies because they are objec-

tively evaluated based on clearly defined criteria, which means they are the same for all banks

and are not subject to personal interpretation. Therefore, CAMELS are better than individ-

ually determined factors in terms of consistently using and assessing the financial health of

banks in an unbiased manner. In the feature selection process, we consider the correlation

between predictors and the binary dependent variable and the non-linear relationship and
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multicollinearities among the predictors. These issues still need to be fully addressed in

the feature selection process in the existing literature. We use a multi-stage approach to

refine the feature selection, including testing correlation. We eliminate less relevant features

by adding a penalty term to the loss function and ranking the feature’s importance. Our

contribution is to identify the characteristics with solid explanatory power for bank failure

and demonstrate that they can be used to predict poor bank performance over time.

2.2 Development of Prediction Methods

At the same time, bank failure prediction methods range from conventional methods, such

as logit regression, to advanced machine learning techniques. Huang, Chang, and Liu (2012)

use the logistic regression model for bank failure prediction for developing and developed

country cases. Similarly, Serrano et al. (2014) apply the partial least square path modeling

(PLS-PM) and logistic regression model to the U.S. data to investigate the pre-condition

of the 2009 banking crisis. Cleary and Hebb (2016) utilized the discrimination analysis to

the in-sample data in 2002-2009 and successfully distinguished solvent banks from insolvent

banks.

Some studies indicate that Neural Networks have the best performance for bank failure

prediction. In the early research, Tam and Kiang (1992) discussed that even though NNs are

criticized for being time-consuming and difficult interpretation, their performance surpasses

other prediction models. In the following study, Boyacioglu and Kara (2009) indicated that

NN-related techniques, multi-layer perceptron, and learning vector quantization have the

best predictive power (100%) on training and validation data. Moreover, some research

notes the superior performance of the SVM. Gogas, Papadimitriou and Agrapetidou (2018)

pointed out that, with the statistically selected explanatory variables, the accuracy of SVM

classifying the solvent and insolvent banks reaches 98% and 99.22% for in-sample and out-

of-sample, respectively.

In recent literature, many advanced machine-learning techniques and extensions have been

adopted for bankruptcy prediction. Carmona, Climent and Momparler (2019) evaluated the

predictive power of XGBoost, the extended branch of boosting methods, and compared it

with conventional models. The results show that XGBoost is the most efficient method for
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bank failure prediction based on the selected sample. In line with Carmona, Climent and

Momparler (2019), Pham and Ho (2021) also reported that XGBoost has higher predictive

power than AdaBoost and Gradient Boosting in forecasting bank insolvency.

However, the number of studies using hybrid machine learning models is limited in bank

failure prediction. Ekinci and Erdal (2017) compared the hybrid machine learning models

based on trees with the single models for tackling the bank failure problem and found that

the former yields superior performance. Petropoulos et al. (2020) examined the ability of

SVM, NN, and RF and some conventional models, including logistic regression and linear

discriminant analysis, to forecast bank insolvency based on the in-sample and out-of-sample

data. The results show the superior prediction ability of RF in both the U.S. case and the

European case.

Our study aims to examine the consistency of prediction indicators by analyzing the pre-

and post-crisis periods. The related paper, Goenner (2020), shows that policymakers using

estimates based on the Savings and Loans crisis would identify the banks in critical condition

and unhealthy in early 2009. Our study differs from existing literature in that we argue that

the financial conditions influencing bank failure in the 2009 financial crisis also affected failure

in the stable period. Our research aims to show that the same predictors used to explain

poor bank performance during the 2008 financial crisis can predict bank performance and

the probability of failure in the post-crisis period. Moreover, we utilize four single machine

learning methods and compare their performance to identify the most suitable one with

superior prediction power. The comparison illustrates that no “one size fits all” method

exists, but improving the ML model will lead to increased prediction accuracy. We also

reclassify banks into multiple groups and take an insight into the influence of risk default

level on bank failure, which compares banks’ risk-bearing abilities during the crisis.

3 Data Description

The bank failure predictors are collected from the Federal Financial Institutions Examina-

tion Council (FFIEC). Most financial characteristics are obtained from Reports of Condition

and Income (Call Reports) and the Uniform Bank Performance Reports (UBPRs) in FFIEC.
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Specifically, the Call Reports contain bank income statements, balance sheets, loan infor-

mation, and other information reflecting bank health. At the same time, the UBPRs show

the impact of management decisions and economic conditions on a bank’s performance and

balance-sheet composition to evaluate the adequacy of earnings, liquidity, capital, asset and

liability management, and growth management. There are 8020 banks covered over the

sample period 2006-2019, and the bank information is classified quarterly.

To evaluate the bank performance across time and samples with the same explanatory

variables, we split the data into two parts by time. In the first part, the data are resampled

to two groups based on the rule-of-thumb, the in-sample data and the out-of-sample data,

where the former is randomly stratified of 75% of 2006-2012 data for training, and the latter

comprises the remaining 25% of the observations of 2006-2012 for testing. The first part

illustrates the bank performance before and during the financial crisis, which composes the

basis of selecting the authentic explanatory features. The second part indicates the out-of-

time sample that discovers the bank performance in the stable period spanning 2013-2019.

Figure 1 presents the two time windows used in this study.

Figure 1: The Time Window of Data Groups

The information about failed banks is collected from the Federal Deposits Insurance Corpo-

ration (FDIC), which lists bank failure events. In the period 2006-2019, the sample contains

535 failure events. Table 1 shows the sample data of failed banks during this period.
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Table 1: The Number of Failed Banks in Year 2006-2019

Time Failed banks

2006 0

2007 3

2008 25

2009 140

2010 157

2011 92

2012 51

2013 24

2014 18

2015 8

2016 5

2017 8

2018 0

2019 4

The variable selection is based on the CAMELS (capital, asset, management efficiency,

earnings, liquidity, and market risks) that are both globally accepted by economic authorities

and extensively applied in academic research (Lopez, 1999; Bank and Fund, 2005; Audrino,

Kostrov and Ortega, 2019). FFIEC and FDIC provide comprehensive information about

CAMELS of both failed and non-failed banks. Table A1 shows variable descriptions in

detail, and A2 shows the summary of variables by groups (failed and non-failed). Besides

CAMELS, we include the bank size, defined by the logarithm of the assets, as another

variable labeled by O1. Some studies (i.e., Bertay, Demirg”uç-Kunt and Huizinga (2013))

on risk predictions noted that banks’ incentive to chase risks is positively associated with

banks’ size as bigger banks can take the privilege of ”too big to fail”.

Moreover, Zhao, Sinha and Ge (2009) identified that using feature construction data is

better than using absolute values in the regression models. Some features are less relative in
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describing the characters individually but can become relevant when combined (Markovitch

and Rosenstein, 2002). Thus, this research uses absolute values and feature construction

data to diversify bank performance indicators. Moreover, we use two-year (eight quarters)

lags before the financial crisis in 2008. Unlike the existing studies that use one year lag, our

expanded time window to increase the data volume for evaluating the causal effect of bank

performance before the crisis on the following bank failure (Cole and White, 2012; Audrino,

Kostrov and Ortega, 2019; Manthoulis et al., 2020; Petropoulos et al., 2020). Ultimately,

The base for variable selection consists of 405 predictors, including original explanatory and

lagged-explanatory variables.

6801 banks compose the sample set without missing values. Meanwhile, the independent

variable is the dummy variable that equals one if the bank failed and zero otherwise. One

common problem is that the number of non-failed banks is overwhelmingly larger than that

of failed banks. In terms of imbalanced data, oversampling such as Synthetic Minority

Over-sampling Technique (SMOTE) is widely accepted to rebalance the data set by adding

estimated data to the minority group. However, if the imbalanced gap is overwhelmingly

large, estimated data cannot truly represent the actual data due to outliers and noises.

Besides, many estimated data complemented to the minority group will lead to the overfitting

problem. Thus, following Petropoulos et al. (2020), which employs the under-sampling

method, we narrow the imbalance in the training sample by randomly selecting 10% from

the majority group, and the proportion of the minority to the majority increases from 3.4%

to 40%. Compared to the existing literature, We do not deal with the remaining testing data

because any estimation action in the testing groups will lead to overfitted prediction results.

Moreover, our feature selection and bank failure prediction results are convincing because

we have a comprehensive set of variables that captures the performance of banks.

4 Methodology

This section introduces the feature selection and classification methods in the multi-step

approach, including the correlation test, two embedded feature selection methods and four

machine learning classification methods. The implemented procedure is presented in the
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flow chart (figure A1). We used the combined results of three feature selection methods to

propose a sound variable subset employed for prediction in the next stage. The following

subsections thoroughly clarify the details and discussions of the methodologies in each phase.

4.1 Variable Selection

We used three different types of feature selection models, Mutual Information Selection,

Logistic Lasso and Random Forests, that are combined to generate the best variable subsets.

They have different mechanisms with the same goal of selecting a compact set of superior

features at very low cost. Specifically, the Mutual Information Selection filters the redundant

and irrelevant information by detecting dependencies between the independent variables

and the dependent variable. The Logistic Lasso produces sparse results by shrinking the

parameter of less relevant variables to zero. Also, the logistic lasso is an automated feature

selection procedure and overcomes the challenge of multicollinearity. The Random Forests is

a non-linear feature selection method that shows the feature importance based on the mean

decrease in impurity. The combination of three methods increases the diversification that

eliminates the influence of errors. Therefore, it is evident that selected variables are relevant

to the dependent variable in great dependencies and feature importance. The following

content elaborates on each method in detail.

4.1.1 Mutual Information Selection (MI)

Mutual information (MI) selection (Shannon, 1948) is a filter method that measures the

mutual dependencies between two variables. It indicates how much information can be

obtained from a random variable based on the knowledge of another random variable. In

this research, we are proceeding with the binary classification, therefore, it is important

to accurately measure the correlation between the categorical variable and the continuous

variable. MI is suitable for correlation tests without restriction on data type.

The entropy is used as the basic criteria for measuring mutual information. Based on the

information theory of Shannon (1948), entropy measures uncertainty related to the proba-

bility of occurrence of an event. Formally, for one random variable x with a possible value
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{x1, x2, · · ·xn}, entropy is defined as:

H(x) = −
n∑
i=1

p (xi) log (p (xi)) (1)

where p (xi) = Pr {x = xi} is the mass probability of random variables. The entropy can be

interpreted as the negative expected value of the logarithm of the mass probability. For two

random variables x and y that have joint mass probability p (xi, yi), the joint entropy is as

follows:

H({x, y}) = −
n∑
i=1

n∑
j=1

p (xi, yj) · log (p (xi, yj) (2)

It measures the uncertainty contained by both variables. The remaining uncertainty of one

random variable x when the value of y is given is measured by the conditional entropy that

is defined as:

H(x | y) =
n∑
j=1

p (yj) ·H (x | y = yj) (3)

With the basic concepts of entropy, MI is defined as the follows:

I(x; y) =
n∑
i=1

n∑
j=1

p (xi, yj) · log

(
p (xi, yj)

p (xi) · p (yj)

)
(4)

MI is bigger if two variables are highly correlated, while MI becomes zero if two variables

are statistically independent. For better interpretation, MI can be expressed as:

I(x; y) = H(y)−H(y | x) (5)

Equation (5) shows that the correlation between two random variables depends on the differ-
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ence between the entropy of one variable and the conditional entropy of the other one, which

indicates the reduction of uncertainty on the value of one random variable once the other one

is known. MI identifies the union information of two variables to measure their dependencies

and correlations. As H (y) is independent, the feature selection in order to maximize the

I (x; y) becomes the work of minimizing the conditional criteria H (y | x). Moreover, the

MI is favorable for three properties: first, it has the capacity of measuring the correlation

between any kinds of variables, such as categorical and continuous one; In our research,

we have dummy dependent variable , where other linear models are not able to capture

the correlations within our variables. Second, MI has the advantage of detecting non-linear

relationships between variables, which is the best suitable for our categorical data; Third,

it is invariant under space transformation, which means the logarithm of our data do not

influence the correlation results when using MI.

4.1.2 Embedded Methods

Logistic Lasso It is acknowledged that Lasso is a widely used feature selection method

(Meier, Van De Geer and B”uhlmann, 2008; Rapach, Strauss and Zhou, 2013) It has ad-

vantages in highly efficient performance and overcomes the multicollinearity in regression.

However, Lasso becomes disgraced for the classification problem in which labels of given

responses are discrete values (i.e., 0or1) as it is incapable of dealing with the regression with

the categorical dependent variable. Thus, in this research, we employed the combination of

Logistic regression and Lasso, where the former helps the latter to deal with the regression

problem based on the binary dependent variable. In linear regression with continuous vari-

ables, the intuition behind Lasso is to minimize the residual sum of squares subject to the

sum of the absolute value of the coefficients being less than a constant(Tibshirani, 1996). In

the Logistic Lasso, the penalized element is preserved from Lasso. For feature selection in

the classification problem, the Logistic Lasso uses the likelihood function, and the parameter

estimates are obtained by maximizing the log-likelihood function with l1 penalty. Formally,

the process of achieving the Logistic Lasso is as follows: For xi and corresponding response
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yi (i = 1, 2. . . n), the likelihood function is

P (yi = 1) =
exiβ

1 + exiβ
(6)

In the logistic regression, the estimated parameter is obtained by maximizing the log-

likelihood function:

l(β) =
n∑
i=1

[
yi log

(
exiβ

1 + exiβ

)
+ (1− yi) log

(
1− exiβ

1 + exiβ

)]
=

n∑
i=1

[
yixiβ − log

(
1 + exiβ

)] (7)

The Logistic Lasso is the maximization of penalized log-likelihood function that achieves the

regularization by integrating the regression of binary variables and the coefficient shrinking.

Formally, it is defined as following:

l(β) =
n∑
i=1

[
yixiβ − log

(
1 + exiβ

)]
− λ

∑
|β| (8)

The logistic Lasso unions the advantages of Logistic regression and Lasso, but also cir-

cumvents the shortcomings of both methods. Specifically, it is better than the original Lasso

to solve the classification problem with the linear regression, and suitable for our research

that needs the likelihood function to measure the categorical information of the independent

variable. It also performs superiorly to Logistic regression by trading off a small increase in

bias for a large decrease in the variance of the predictions.

Random Forests (RFs) RFs start by drawing a bootstrap sample from training data.

Then, it grows a random tree by selecting a group of variables randomly. The tree grows

from the root node to the leaf nodes, with intermediates called internal nodes. RFs pick

the selected group’s best variable and split the node into two sub-nodes in the procedure.

Then, recursively repeat the selection and splitting until reaching the minimum node size.
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The main advantage of RFs is that they can capture complex data interactions and have a

relatively low bias if the tree grows efficiently large. The RFs output is the class selected by

most trees for classification. Thus, RFs are less prone to overfitting and generally perform

better than simple decision trees.

The feature importance of the RFs is evaluated using Gini importance, which determines

the split at each node. It is calculated as the decrease in node impurity weighted by the

probability of reaching the node. The probability is measured by the proportion of samples

reaching that node to the total number of samples. The higher feature importance indicates

higher explanation power and relevance. Thus, the RFs select the features in the classification

procedure and group the subsets of features with high purity.

4.2 Classification Methods

We employ four popular single machine learning classification methods in the third step:

Neural Network, Support Vector Machine, K-nearest Neighbour and Gradient Boosting De-

cision Tree. The four individual methods belong to different types; we evaluate their per-

formance by comparing the classification accuracy based on variable subsets selected in first

two steps. Under the same threshold, we identified the most efficient method applied to

the extensive banking data to predict the potential failure. These methods are widely used

in predicting the distress in the financial market, such as the financial recess and the stock

prices. They are suitable for our case in two ways, first they have no assumption on the

statistical distribution of the data. Another advantage is their reliance on non-linear ap-

proaches, which can be more accurate when we have more complex data patterns. The

details are introduced in the following content.

Neural Network (NN)

We applied a deep learning method, NN, that mimics human brain activities for classifi-

cation. Given the selected variable set, and corresponding outputs (1 for failed banks and 0

for non-failed banks), it learns the transformation in the hidden layers concerning different

weights on the predictors. Specifically, the assigned weights for variables are initially ini-

tialized and determine the importance, with larger ones contributing more to the outputs.
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Then, the set of labeled training inputs is sent to the neural network to propagate through

the hidden layers with the corresponding outputs, based on the weights fine-tuned in each

hidden layer. The trained NN model is applied to the forecasting data and makes predictions.

It is noted by some studies that NN serves as more accurate and efficient classifiers than

traditional methods such as logistic regression and linear discriminant analysis for prediction

studies, especially with the extensive sample data (Kwon and Lee, 2015; Abdou et al., 2019).

However, NN is criticized for its ‘black-box’ nature, indicating that generating the outputs

through layers of neurons is non-transparent. Thus, errors in results are difficult to explain.

At the same time, NN also requires a large number of input. Otherwise, the overfitting issues

will lead to biased results.

Support Vector Machine (SVM)

In terms of dealing with the overfitting problem, we applied SVM (Vapnik, 1995), which

performs better than NN in respect of requiring much fewer input data. SVM classifies the

sample data by identifying a hyperplane that maximizes the margin between sample groups.

Moreover, SVM addresses the non-linear classification problems by projecting the sample

onto another higher dimensional space by using different kinds of kernel functions, including

polynomial, Gaussian radial basis function, sigmoid, and hyperbolic tangent (Vapnik, 1998).

SVM is also one of the fastest robust algorithms with several appealing characteristics.

It is flexible in the threshold separating the solvent banks from the insolvent banks, linear

or non-linear. Compared with the NN with multiple solutions associated with the local

optimal, SVM delivers a remarkable result by addressing the convex global optimization

problem. However, the performance of SVM is sensitive to the outliers in the data. As the

SVM decides the hyperplane based on the support vectors, data overlap of two target classes

will lead to an inaccurate hyperplane that deviates from the correct position.

K-nearest Neighbor (KNN)

Meanwhile, we also use a non-parametric supervised technique KNN (Cover and Hart,

1967), to assign banks to failed or non-failed groups with their K nearest neighbors based

on a distance measure such as Euclidean Minkowski Distance and Manhattan Distance. K
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is the number of members in each category. We utilize Euclidean distance measure and set

K to be 10 in default. The advantage of KNN is its simplicity because it neither makes any

assumptions on data nor uses the training data points to generalize the model framework.

However, KNN is sensitive to the data quality, such as the existence of errors and outliers.

Gradient Boosting Decision Tree (GBDT)

To avoid outliers and redundant information issues, we applied GBDT from the ensemble

tree methods. The basic idea of GBDT is to utilize a series of weak classifiers to a strong

one. It trains each tree sequentially and reaches the classification target by successively

minimizing the error. The loss function of GBDT is commonly regarding Negative binomial

likelihood that is difficult to be optimized by the common gradient method. Thus, instead

of weighting positive and negative samples, GBDT makes global convergence by using the

negative gradient of the loss function to get the approximation of the loss in each training. It

uses the least-squares function minimization to replace the challenging function minimizing

issue, followed by a single parameter optimization based on the original criterion.

Suppose there are x variables with corresponding response function F (x) that is the addi-

tive expansion based on the individual decision tree h (x; am). Formally, function is written

as F (x) =
∑M

m=1 fm(x) =
∑M

m=1 βmh (x; am), where the βm is estimated by minimizing the

loss function L(y, F (x)) = (y − F (x))2. Therefore, the GBDT algorithm is summarized as

follow:

i. Initialize the response function to be a constant, F0(x) = argminβ
∑N

i=1 L (yi, β).

ii. Compute the negative gradient: m = 1, 2 . . .M, i = 1, 2 . . . N

ỹim = −
[
∂L (yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

(9)

iii. Fit the individual decision tree h (x; am) to the target ỹim

iv. Estimate the βm with gradient descent and update the model:

βm = arg minβ
∑N

i=1 L (yi, Fm−1 (xi) + βh (xi; am))

Fm(x) = Fm−1(x) + βmh (x; am)
(10)
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v. The final output is F (x) = FM(x) GBDT is capable of handling different types of inde-

pendent variables, capturing the multicollinearities, and fitting the non-linear relationship

(Ke et al., 2017; Rao et al., 2019). It is noted that GBDT, as the second generation ensem-

ble method, is superior to simple bagging methods such as Random Forests. The outcome

of bagging methods depends on the majority vote, while the GBDT with proper hyper-

parameter tuning outperforms bagging by minimizing the error term to reach the optimal

results.

5 Results

5.1 The Classification of Two Groups

We developed and applied a multi-stage model to see whether the applied indicators

can accurately anticipate the bank failure and whether the model can efficiently forecast

and distinguish between solvent and insolvent banks. Before proceeding to the forecasting,

it is essential to conduct the variable selection in the first stage shown in figure A1 to

reduce the influence of less irrelevant variables. In the first step, the mutual information

selection generates a preliminary variable subset. The new subset consists of 136 (out of

405) predictors that are highly correlated with the dependent variable. In the second step,

the Logistic Lasso regression applied to 136 predictors further shrinks the size of the subset

to 42. In the procedure, the optimal lambda that is selected by cross-validation leads to

the minimum estimation error. In the meantime, the RFs also select relevant features based

on the MI subset. By comparing and utilizing results from two embedded methods, four

variables having high feature importance that are identified by RFs are complemented to

the variable subset. Ultimately, 54 indicators compose the comprehensive predictor subset

with good explanation power.

Table 2 presents the categorical results of feature selection. Our findings suggest that

variables related to capital, assets, and liquidity have a greater impact on explaining bank

failure. The assets and capital have a negative relationship with bank insolvency as they are

crucial factors for creating liquidity buffers for the bank to withstand shocks and crises, while

uncollected loans are positively associated with bank risk due to default. Specifically, it is
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clear that capital directly related to risk resistance, such as risk-based capital and equity, are

essential buffers during a crisis. In terms of assets and liquidity, a bank’s loans have a complex

association with its solvency. Well-performing loans can increase a bank’s interest income,

liquidity, and capital adequacy, which enhances the bank’s solvency, while the provision of

losses from loans is an expense for potentially uncollected loans and payments. Additionally,

management and earnings, which are included to assess the health of banks, demonstrate the

bank’s financial performance and profitability. Effective management can facilitate sound

financial decision-making, cost control, and profitability at a bank, which can contribute to

its financial health. In terms of earnings, profitability is often viewed as an indicator of a

bank’s financial health, as it demonstrates the ability to generate sufficient revenue to cover

expenses and remain solvent. In contrast, an unprofitable bank may struggle to maintain

solvency and may potentially experience financial distress.

Table 2: Categories of Selected Variables In Second Step

Capital Asset Management Earnings Liquidity Sensitivity

Capital Adequacy Ratio
Equity Growth Less

Asset Growth

Net Operating Income

to Average Asset
Return on Asset Net Loans to Total Asset

Fair value of available-

for-sale securities

Tier 1 Risk-Based Capital

Ratio to Risk-weighted

Assets

Noncurrent Loans and

Leases to Gross Loans

and Leases

Efficiency Ratio
Retain Earns to Average

Total Equity
Net Loan to Core Deposits

Tier 1 Leverage Ratio
Leases to Gross Loans

and Leases
Total Deposits

Equity to Assets Ratio
Average Total Loans

and Leases
Loan to Deposit Shortfall

Return on Equity
Loan and Lease

Allowance

Net Income

In the third step, we applied the NN, SVM, KNN and GBDT to the in-sample data and

out-of-sample data showed in time-window I. We also used the data from 2013-2019 for

robustness check to figure out the consistency of the explanatory variables over time. We

under-sample the training data to narrow the imbalance between the majority group and

the minority group, while the test groups remain unchanged to avoid generating noises and

overfitting as the result of manual adjustment. To evaluate the performance of each method

based on different sample groups, we used the precision and sensitivity as basic metrics that

are widely accepted for assessing measurement (Bekkar, Djemaa and Alitouche, 2013; Le

and Viviani, 2018; Carmona, Climent and Momparler, 2019; Pinter et al., 2020; Chicco and
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Jurman, 2020). The specificity and sensitivity are calculated by referring to the confusion

matrix that summarizes the number of correct and incorrect predictions of classification

problems. In particular, the confusion matrix shows the number of true positive (TP), true

negative (TN) , false positive (FP) and false negative (FN), where TP refers to the number

of positive cases, such as healthy banks, correctly identified as positive; TN is the number of

negative cases such as failed bank correctly identified as negative; FP indicate the number of

negative cases that are misidentified as the positive cases; FN shows the number of positive

cases that are incorrectly identified as negative cases.

Formally, sensitivity is the proportion of true positive (TP) predictions to the aggregation

of true positive (TP) and false negative (FN), and the specificity is the proportion of true

negative (TN) to the sum of true negative (TN) and false positive (FP). Table 3 presents

the confusion matrix composed of TP, FP, TN, FN.

Table 3: Confusion Matrix

Predicted Class

True Class
Positive Negative

Positive TP FP

Negative FN TN

Indicator Sensitivity= TP
TP+FN

Specificity= TN
TN+FP

We adopted several models assessing measures that are calculated based on the sensitivity

and specificity and assessed the performance of each method from two perspectives: the

prediction accuracy and probability of misclassification. In particular, we are focusing on

the following measures:

• Prediction Accuracy

i.Geometric Means (G-means): It evaluates the balance between class performances on

the majority and minority groups:

G =
√

sensitivity ∗ specificity
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The score indicates the prediction performance of the positive cases. The poor performance

of correctly recognizing the positive cases will lead to a low G-means value despite the high

accuracy in correctly identifying the negative cases.

ii.Negative Likelihood Ratio (NLR): It is the ratio between the probability of predicting

a case as false negative (FN) and true negative (TN).

NLR =
1− sensitivity

specificity

The better performance will lead to lower NLR, which is an important indicator of the

correctly identified insolvent cases in bank failure prediction.

iii.F1 Score: It evaluate the classification accuracy by combining the sensitivity and speci-

ficity of a classifier into a single metric by taking their harmonic mean. It is also used for

comparing the performance of two classifiers when using the sensitivity and specificity are

difficult to distinguish the better one.

F1− score =
2 ∗ sensitivity ∗ specificity

sensitivity + specificity

The higher F1 score is the result of better general performance of truly identifying the positive

and negative cases, and the classifier outweighs its counterparts in classification based on

the given variable set.

iv.Balanced Accuracy (BA): It is the simple average of sensitivity and specificity, which

does not disregard the accuracy of the model in minority class.

BA =
1

2( sensitivity + specificity )

The conventional accuracy can be overoptimistic inflated as it takes advantage of the high

prediction accuracy of the majority group. BA eliminates the adverse effect of the conven-

tional accuracy by equally taking account of the majority group and the minority group.

• Probability of Misclassification
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i.Youden’s index (J): It is a linear combination of sensitivity and specificity.

J = sensitivity − (1− specificity )

The higher value of the J indicates the better ability of the classifier to avoid misclassification

of banks.

ii.Area Under Curve (AUC): It measures the degree of the separability and the capability

of model distinguishing between classes. It is graphically interpreted as the area below

the receiver operating characteristic (ROC) curve. The common calculation method is the

trapezoid that is based on the linear interpolation between each point on the ROC curve.

The mathematical interpretation of AUC is the probability of ranking a random positive

example more highly than a random negative example. In general, the AUC values varies

between 0.5 and 1 and positively related to the classification performance. The AUC value

above 0.8 indicates a very good performance with less misclassification.

iii.Matthew Correlation Coefficient (MCC): It is a contingency matrix method of calculat-

ing the Pearson product-moment correlation coefficient between actual and predicted values.

MCC =
TN ∗ TP − FN ∗ FP√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

The MCC is unaffected by the unbalanced data issue, and the value turns high if the binary

classifier is able to correctly identify the majority of positive and negative cases.

Table 4 shows the results based on the in-sample data. In terms of accuracy, KNN

and GBDT are superior to NN and SVM. It should be highlighted that KNN is the non-

parametric machine learning method that does not have many assumptions about the un-

derlying function, so it is more powerful and flexible. It is not surprising that GBDT delivers

statistically significant forecasting power for bank failure, which is acknowledged by a strand

of studies on the comparison of machine learning methods. When focusing on NLR, it shows

that NN performs better than the KNN in identifying the insolvent banks, which is the main

point of this study. However, it is possible that the performance of NN is optimistically

inflated, which is the common pitfall of NN(Petropoulos et al., 2020).
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Table 4: The Prediction Evaluation based on the In-sample Data

Method Sensitivity Specificity F1-score G-mean NLR BA J AUC MCC

NN 0.850 0.634 0.726 0.734 0.236 0.742 0.484 0.766 0.211

SVM 0.895 0.621 0.733 0.745 0.169 0.758 0.515 0.797 0.244

KNN 0.752 0.801 0.776 0.776 0.310 0.776 0.553 0.772 0.263

GBDT 0.821 0.912 0.864 0.865 0.197 0.866 0.733 0.856 0.424

We examined the trained model based on the out-of-sample data (table 5) and find that

GBDT aligns the best across the four methods. While, indicated by accuracy indicators

including F1-score and G-means, KNN ranking the second is found performing superior to the

SVM. While in terms of avoiding the misclassification, the NLR, AUC and J-index illustrate

that KNN is underperformed than SVM, leading to a higher probability of classifying the

true cases to the wrong group. Regarding the out-of-time performance, the KNN and GBDT

align the best fit, with the former exhibiting marginally better performance in 5 criteria and

the latter delivering marginally overperformance in all criteria. Additionally, in the out-of-

time performance evaluation, NN has the poorest performance in all the criteria.

Table 5: The Prediction Evaluation based on the Out-of-sample Data

Methods Sensitivity Specificity F1-score G-mean NLR BA J AUC MCC

NN 0.878 0.647 0.745 0.754 0.189 0.762 0.525 0.774 0.239

SVM 0.932 0.662 0.774 0.785 0.103 0.797 0.594 0.795 0.266

KNN 0.809 0.783 0.796 0.796 0.244 0.796 0.591 0.770 0.284

GBDT 0.813 0.911 0.859 0.860 0.206 0.862 0.723 0.864 0.429

Table 6: The Prediction Evaluation based on the 13-19 Data

Methods Sensitivity Specificity F1-score G-mean NLR BA J AUC MCC

NN 0.665 0.793 0.723 0.726 0.423 0.729 0.458 0.729 0.435

SVM 0.782 0.838 0.809 0.809 0.260 0.810 0.620 0.810 0.589

KNN 0.730 0.901 0.806 0.811 0.300 0.815 0.631 0.815 0.633

GBDT 0.751 0.977 0.849 0.856 0.255 0.864 0.728 0.864 0.784
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In general, it is evident that GBDT exhibits has better prediction power than the rest

models, and the performance provided is stable and consistent across all sample groups.

It is an adequate tool obtained for future bank risk estimation. In contrast, NN performs

poorly both in the “in-sample” and “out-of-time” samples. Regarding the comparisons of

three samples, all models perform relatively well in the first time window, while the GBDT

and KNN provide pervasively good results across different time windows. The consistent

performance of the trained models across time also denotes that the selected variables are

essential in signaling the bank risk-taking behavior in both crisis and stable period.

It is acknowledged that the unanticipated bank failure can trigger large systemic risk in the

financial market. Due to contagion effects, the cost of bank failure is much higher than the

default of other financial institutions. The increasing demanding for money from depositors

leads to serious liquidity issues and the declining money supply to bank financing corporates

results in a slowing economic development. On the other hand, the bail-out operation

from the government transfers the overloading costs to taxpayers.Thus, it is imperative

for supervisors to capture early signals of the insolvency based on the accurate prediction

results, and then assign the pre-cautions to resist the destabilization of the economy in time.

5.2 The Classification of Multi-Groups

In the process, we also answer some additional questions based on the risk level of bank

failure that is barely mentioned in the existing literature. Most of the studies have focused

on the technical predictive procession of two classes, the failed and the non-failed, while the

notion of how much risk can banks bear without default is still unclear from forecasting. To

get a clearer picture, we use the classical z score(Roy, 1952; Laeven and Levine, 2009) to

evaluate the bank default risks. Table 7 shows the results of the default risk, summarized

by groups. The mean and quantile results show the distinct default risks between the failed

and non-failed banks. However, whether the risk level difference is significant and whether

the failed banks always have higher risk levels than the non-failed banks are still unknown.
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Table 7: Description of Default Risk by Groups

Variables Obs Mean Std. Dev. p25 p50 p75 Skew. Kurt.

ID = 1 6560 21.907 18.54 6.116 20.182 31.937 1.471 8.002

ID = 0 167775 37.305 25.229 22.911 32.313 45.113 5.218 105.189

To have a clearer perception, we reclassify banks based on bank solvency and level of risk

to default to investigate the boundary between high risk and failure. We use the p50 z-score

of failed banks as the threshold to divide the two-class banks into four classes. The banks

with z-scores less than the value of p50 are labeled with higher risk, and the remaining are

labeled with lower risk. If the risk level difference is significant, banks can be accurately

classified into different risk level groups given the indicators of bank performance. Thus, the

influence of bank risk level on bank failure will be evaluated by classification accuracy.

In terms of classification method, we use GBDT which has the best performance in the

previous section, and the same 54 selected features. The first row of table 8 shows the clas-

sification evaluation results. The F1-score, G-mean, BA, and J score indicate that GBDT

remains the good performance of classification based on the new labels and selected predic-

tors. The prediction accuracy proves that the risk level difference is significant within and

between the failed and non-failed banks, and the non-failed banks can have more risk than

the failed banks. With adequate liquidity and capital, the non-failed banks are capable of

bearing more risks, which helps them to survive during the crisis.

Table 8: Prediction Evaluation of Multi-groups during the Financial Crisis

Assessment Sensitivity Specificity F1-Score G-mean NLR BA J

Four groups 0.782 0.882 0.829 0.831 0.247 0.832 0.664

Six groups 0.719 0.863 0.784 0.788 0.326 0.791 0.582

Furthermore, we also reclassify the banks more specifically into six groups based on the

p50 z-score of both failed banks and non-failed banks. The new labels describe banks that

failed or non-failed with lower, medium, or higher default risks. The second row in table 8

shows the classification results. The decline of evaluation scores compared with the first row

can be attributed to either insignificant differences between medium and higher risk levels or
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insufficient data in each group for model training due to an increased number of subgroups.

We also did the robust test based on the out-of-sample data which covers 2013-2019 (see

table A3). The results are consistent with evaluations of the crisis period.

6 Conclusions

Bank failure prediction is an important topic due to the intermediation role of banks.

The study intends to increase forecasting efficiency to provide early warnings of bankruptcy.

Our analysis used a sample of U.S. data consisting of 6801 banks from 2006-2019. Based

on CAMELS, we applied mutual information selection for examining the correlation, and

embedded feature selection methods, including Logistic Lasso and Random Forest feature

importance, for further variable selection. Then, we examine the performance of NN, SVM,

KNN, and GBDT in classification, employing the selected variable subset.

The variable selection results show that the combination of the correlation test and the

embedded methods decreased the number of variables to 54. Moreover, we found that

indicators related to capital, asset and liquidity are essential and consistent in explaining

bank failures over time and can be devoted to long-term forecasting.

The comparative prediction results show that the best fit model is GBDT which delivers

the most accurate results. Besides, KNN has relatively more prediction power when eval-

uating samples of crisis period and NN has the worst performance. In terms of practical

value, GBDT is an outstanding classification tool to help supervisors achieve the optimal

possible accuracy when setting an early warning system for bank insolvency. We contribute

to the literature by examining different types of machine learning models based on long-term

forecasting and validating the consistency of the selected variables for further bank failure

prediction. Additionally, we capture the influence of the default risk level on the bank failure

and identify the significant difference in level risks within and between failed and non-failed

banks. The results indicate that the combined effect of adequate liquidity and capital is the

key to highly risky banks overcoming the shocks such as bank-run, which is meaningful for

regulation and supervision.

In respect of the limitations, CAMELS may not fully describe the risks due to the nature
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of banks’ operation and practice strategies. Further research will explore more features such

as market data, corporate governance, diversification, non-financial activities, green finance

regulations, macroeconomic factors, and customer-related indicators. Further study will

focus on adding diversification indicators and completing hybrid prediction models.
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A Appendix

Table A1: Descriptive of Variables

36



Table A2: Summary of Variables by Groups
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Table A3: Prediction Evaluation of Multi-groups based on the Out-of-sample Data

Assessment Sensitivity Specificity F1-Score G-mean NLR BA J

Four groups 0.617 0.922 0.739 0.754 0.415 0.770 0.539

Six groups 0.497 0.938 0.650 0.683 0.536 0.717 0.435

Figure A1: The Flow Chart of Research Process
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